Inductive Learning of Fuzzy Regression Trees

نویسنده

  • Mario Drobics
چکیده

In this paper we present a novel approach to datadriven fuzzy modeling which aims to create highly accurate but also easily comprehensible models. This goal is obtained by defining a flexible but expressive language automatically from the data. This language is then used to inductively learn fuzzy regression trees from the data. Finally, we present a detailed comparison study on the performance of the proposed method and an outlook to future developments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FS-LiRT—An Inductive Learning Method for Creating Comprehensible Fuzzy Regression Trees

s of the FLLL/SCCH Master and PhD Seminar Room 010, Software Park Hagenberg April 7, 2005 Software Competence Center Hagenberg Fuzzy Logic Laboratorium Linz-Hagenberg Hauptstrasse 99 Hauptstrasse 99 A-4232 Hagenberg A-4232 Hagenberg Tel. +43 7236 3343 800 Tel. +43 7236 3343 431 Fax +43 7236 3343 888 Fax +43 7236 3343 434 www.scch.at www.flll.jku.at

متن کامل

FILM: a fuzzy inductive learning method for automated knowledge acquisition

Inductive learning that creates decision trees from a set of existing cases is useful for automated knowledge acquisition. Most of the existing methods in literature are based on crisp concepts that are weak in handling marginal cases. In this paper, we present a fuzzy inductive learning method that integrates the fuzzy set theory into the regular inductive learning processes. The method conver...

متن کامل

Learning from Imprecise and Fuzzy Observations: Data Disambiguation through Generalized Loss Minimization

Methods for analyzing or learning from “fuzzy data” have attracted increasing attention in recent years. In many cases, however, existing methods (for precise, non-fuzzy data) are extended to the fuzzy case in an ad-hoc manner, and without carefully considering the interpretation of a fuzzy set when being used for modeling data. Distinguishing between an ontic and an epistemic interpretation of...

متن کامل

Multitask Learning 43 1

Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new eviden...

متن کامل

Mining Tolerance Regions with Model Trees

Many problems encountered in practice involve the prediction of a continuous attribute associated with an example. This problem, known as regression, requires that samples of past experience with known continuous answers are examined and generalized in a regression model to be used in predicting future examples. Regression algorithms deeply investigated in statistics, machine learning and data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005